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Chapter 5: Applications
Fission simulations



Using fission in FISPACT-II

• FISPACT-II is distributed with a variety of fission yields and 
decay data, just as incident particle cross sections, etc.

• Fission is by default turned off and must be included with the 
following keywords: 
 USFISSION – turns on fission
 FISYIELD – selects the fission yield files to read
 FISCHOOSE – turns on fission for the given nuclides

• The default fission yields are read from mt=454, the 
independent fission yields. To use the cumulative mt=459 add 
the keyword: CUMFYLD
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Fission within FISPACT-II

• Fission (fy_endf and sf_endf) are handled within the ARRAYX 
processing process with decay

• Note that (n,f) reactions will populate without the full ARRAYX 
data, but not produce the yields
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Fission yields for simulation

• The standard modern fission yields are all distributed with 
FISPACT-II, including ENDF/B, JEFF, JENDL

 These have at most three incident energies: thermal (0.0253 eV), 
fast (~400-500 keV) and 14 MeV
 Fission yields are very sensitive to incident energy, particularly at 

higher energies – also note multi-chance
 For thermal reactors, this may be fine, but not for many others

• Simulation of fission yields has become much more 
sophisticated in past 10 years, particularly with codes such as 
GEF and FREYA

4



GEF

• The GEF code has been developed (and much of the physics 
within it!) by several physicists

• We cite those below (and their collaborators), from which we 
take the following material 

• It is a fast, freely available code with surprisingly complex 
capabilities
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Template

There is also considerable added theory in the model! And 
the semi-empirical parameters are fit to experimental data
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Example fission yield

• The JEFF-3.1.1 thermal Pu239 is shown below, there is also a 
400 keV file but nothing more
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The GEFY-5.2 Pu239 file

8



GEFY-5.2 Am241 file
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GEF Application range

• Taken from https://www-nds.iaea.org/index-meeting-crp/TM-
Fission-Yields/docs/Schmidt_slides.pdf
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In many cases outside this ‘application range’, GEF 
remains at least one of the best simulation codes



GEF testing (by K-H Schmidt et al) 

• Extensive chi-squared analysis against mass yields and 
evaluated files have demonstrated power of the system
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Advanced GEF applications

• GEF possesses many advanced features, such as A-
dependent nu-bar, TKEs, covariances etc. Not currently 
employed since no standardised format – watch this space!
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https://www-nds.iaea.org/index-meeting-crp/TM-Fission-
Yields/docs/Schmidt_slides.pdf



FISPACT-II with fission yields

• FISPACT-II condenses the fission yields as a function of 
energy with the incident particle spectrum, producing effective 
yields which account for full multi-chance (when using GEF) 

• A full decay library is required and FISPACT-II will issue 
warnings for missing decays
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• BEWARE: missing data is a 
common issue for legacy 
libraries – employing 
independent yields without 
checking the decays will 
leave nuclides ‘in the sink’ 



Normalisation choices

• FISPACT-II can employ normalisation through two methods:

 FLUX – given in standard incident particles per cm2 per second
 POWER – normalise flux to match a power output in W/cm3. The 

power per incident particle is given by the full collapse of KERMA 
based on user-supplied reactions (total, only fission, fission plus 
specific channels, etc)

• Note that as the nuclide inventory changes, the energy release 
per kg of target will change (for example with depletion of 
U235)

 Correct for changes in nuclide inventory with repeated use of the 
POWER keyword
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Example: In-Cycle Fission Reactor

• Examples of % reactor power after shut-down following:
 Left – LWR fuel with frequency of power renormalisation ranging over  

2/year to 1/day
 Right – Variation over burn-up, showing effect on Pu239/240 isotopic 

inventory ratios
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Multi-collapse simulation

• In realistic simulations, renormalisation and spectral 
modification are necessary, so multiple POWER uses must be 
combined with new  GETXS

• GETDECAY is typically not required since the decays and 
fissions are unaffected, unless the proportion of fissions as a 
function of energy are significantly changed
 This would require massive spectral shift – not partial fuel burn

• In addition, re-self-shielding is typically required, particularly as 
fuel composition and/or poison inventories change
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Time evolution of spectrum
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Multiple collapse

• FISPACT-II accommodates multiple collapses using multiple 
spectra with the FILES file

• xs_endf and prob_tab must be re-specified for each –
potentially with updates if desired
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Input specification and self-shielding

• Self-shielding and collapses can be run in multiple ways, 
depending on user input, for example:

 Users may specify for each and run individual collapses –
followed by one simulation which reads each

 Users with all spectra can include multiple collapses during a 
single simulation

 Directly coupled Boltzmann-Bateman can be done for each step 
with new inputs

• Power normalisation can be set constant to re-calculate flux 
given inventory and kerma values
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Charged incident particles, high-
energy and residuals



Projectile choice

• FISPACT-II can handle the incident nuclear data for five 
particles, which are selected using the PROJECTILE keyword

 PROJECTILE 1 neutrons (default if not stated)
 PROJECTILE 2 deuterons
 PROJECTILE 3 protons
 PROJECTILE 4 alphas
 PROJECTILE 5 gammas

• For neutrons, the 709 group data are used (and 1102, 586 in 
development versions) 

• For charged particles, the 162 group is used instead
 Note that GETXS 1 162 must be used as well
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TENDL residual nuclide production

• Above 30 MeV, reaction channel uniqueness breaks down as 
a functional description within ENDF6
 Too many reactions for < 200 mt values
 Many reactions give equivalent products
 Only total residual production tends to have experimental data

• At 30 MeV TENDL changes from specific-mt descriptions to 
mt=5 mf=10 yield data

• These include summation over all reaction channels and 
condense the data into yield x cross-section for production of 
each residual nuclide
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W-186 proton irradiation
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F-56 deuteron irradiation
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Fission addition

• TENDL contains additional knowledge of fission cross sections 
which are stored and read by FISPACT-II above 30 MeV

• These exist for neutron-induced reactions as well as proton, 
deuteron, alpha, gamma…

• The remaining data required for these are fission yields. While 
these are not supplied in the standard FISPACT-II distribution, 
approximate files can be generated by any suitable code (eg
GEF)
 FISPACT-II can read these (in ENDF6 format) within the same 

fy_endf directory irrespective of incident particle
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Total Monte-Carlo



Total Monte-Carlo

• FISPACT-II has a powerful pathway-based uncertainty method 
which allows UQP for target nuclides produced through 
reactions. 

• Depletion uncertainty of fuels also can be determined from full 
covariance treatment with the code

• An alternative, powerful method for uncertainty quantification 
is the Total Monte-Carlo, based on semi-empirical model 
parameter variation in the nuclear data generation

• Multiple ‘random’ (not random, but based on random 
parameter sampling) files are used for simulation and 
observables are statistically collapsed
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Sampled nuclear data

• The key ingredient is a set of nuclear data files which reflect 
sampling of input parameters and nuclear data uncertainty

• These may include reaction data, fission yields, decays, etc.

• For reactions, the TMC method has been extensively 
developed by the TENDL/TALYS/T6 project

• For fission yields, GEF has been used for UQP, particularly 
using semi-Bayesian methods
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A.J. Koning and D. Rochman ,"Modern nuclear data evaluation with the TALYS code system“,
Nuclear Data Sheets 113, 2841 (2012).

TENDL Nuclear data methodology = T6



Template

• Template
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Applications code (eg FISPACT) UQP



• The fission yields are sensitive to various input parameters which 
have some uncertainty – this is translated to yield uncertainties

Yield sensitivities
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Some random files available

• TENDL-2015 (and several earlier distributions) contain 
sampled files, eg: 

https://tendl.web.psi.ch/tendl_2015/neutron_html/Sn/NeutronSn120.html

• These come with full parameter information for complete 
reproducibility and statistical tests
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Other random files

• For fission yields
https://tendl.web.psi.ch/tendl_2015/randomYields.html

• For thermal scattering
https://tendl.web.psi.ch/tendl_2015/randomThermalScattering.html
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FISPACT-II use

• The ability to fully read any of these files allows repeat 
simulation and collapse – particularly unique for full TENDL

• Simply point to different directories for sampled files within the 
FILES file

• Alternatively use the covariance data provided within TENDL 
(and processed by FISPACT-II), which is based on the same 
parameter variation
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Sampling of the files and repeated simulation results in different simulated 
quantities, such as this Nd148 inventory after 40 GWd/tn burn-up in a BWR-MOX 
assembly. Statistics on these results gives the full TMC uncertainty

Convergence with TMC
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• Independent covariances intuitive based on simulation of fission 
events (independent correlation chart for Nd148 GEFY-5.3 U5_th)

Comments on covariances
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• Cumulative covariances and covariances from full irradiation 
scenarios show completely different trends (assembly 40 GWd/tn)

Comments on covariances
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• FISPACT-II can be used to fully sample random independent (or 
cumulative) yield files with any decay library, propagating 
uncertainties through full fuel life-cycle*

FISPACT-II and nFY TMC
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• Coupling 
FISPACT-II 
covariance 
UQP for 
reaction rates 
with TMC we 
can provide 
coupled 
uncertainties:

– From unc. of 
fissions and 
production of 
fissionable 
nuclides

– From unc. in 
fission yields

– And the 
coupled nFY
+ RR unc.

FISPACT-II RR + nFY UQP
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• Since TENDL-2012 the NRG libraries have entered the secluded 
world of criticality benchmarking – also superseding the terminated 
EAF libraries (last EAF-2010)

• TENDL uniquely contains covariance information
• TENDL provides for all applications: transport, burn-up, inventory, 

transmutation, dosimetry, astrophysics,…
• TENDL-2015 has fully benefited from TENDL-2008, -09 (EAF), -10, 

-11, -12, -13, -14, V&V and the T6 technological construction 
framework

• n-TENDL-2015 nuclear data libraries already outwit in many 
aspects the regional majors: ENDF/B, JENDL, JEFF,..

• However, low z isotopes still will need to come from R-matrix theory 
and the actinides from carefully nurtured TALYS model

TENDL-2015: reliable, V&V libraries for all applications
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Verifications and Validations



FISPACT-II:
• A powerful predictive activation-transmutation-burnup, 

radiation source term prediction tool 
• Identifies and quantifies important reactions and decays 
• Uses full TENDL-2015 covariance data
• Uncertainty estimates: 

• pathways to dominant nuclides
• Monte-Carlo sensitivity
• reduced model + Monte-Carlo sensitivity 

• Uncertainty on all responses: number density, activity, decay 
heat, dose rate, inhalation and ingestion indices, ….

http://www.ccfe.ac.uk/fispact.aspx
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Conclusions


