Integral Validation of TENDL-2014 with EASY-II

Michael Fleming, Jean-Christophe Sublet, Jura Kopecky

Culham Centre for Fusion Energy Culham Science Centre Abingdon Oxfordshire OX14 3DB

29 April 2015

Contents

Data sources

Methods

Results

This work was funded by the Research Councils United Kingdom Energy Programme under grant EP/I501045

Integral experimental values taken from multiple facilities with various beams, targets, sample sizes, measurement apparatus, *data post-processing*, etc

- ▶ JAEA FNS [D-T]
- ENEA FNG [D-T]
- FZK [D-Be, D-Li]
- TUD & SNEG [D-T]
- NPI Řež [p-D]
- Jülich/Qaim [D-Be]
- ²⁵²Cf [sF]

Methods

Flux spectra, methods of characterisation and energy discretisation vary over experiments. One (often non-negligibly populated!) bin 1E-5 to 1E-1 with Vitamin-J 175 not useful for non-threshold

FNS 5-minute position 3 (left) and FZK SS316 d-Li (right)

- Different responses measured by different groups: γ-spec, total spec, total heat...
- \blacktriangleright Spec. can yield product nuclide inventory \rightarrow RR/XS
 - These are mostly insensitive to nuclear data
- If product nuclides are not identified in measurement (eg total heat), they must be inferred by analyst and depend greatly on nuclear data XS and DD!
 - New and complete analysis required for each library set, eg FNS decay heat reports such as CCFE-R(15)25 (data included in integral validation report)
 - New analysis of FNS and FNG heat measurements completed for this work

- Technological approach to reaction (and isomer) identification generally eliminates errors of omission - *however*:
 - ▶ Some isomer production reactions are absent ¹⁷⁹Hf(n,n')¹⁷⁹ⁿHf
 - Some machine error has resulted in spurious branching ratios for ¹¹⁵In(n,γ) and ⁹²Mo(n,p)
- > 30MeV reactions given by MT=5 with yield MF=10 file
 - While EAF reports claim reaction identification, TENDL leaves this implicitly ambiguous. Reactions which are unique were identified, others could not be validated.
- Pathway allocation and identification of reactions is a subtle problem for validation.

Product	Pathway(s)	%
Ta182	W182(n,p)	49.4
	W182(n,p)Ta182m(IT)	41.3
	W182(n,p)Ta182n(IT)	3.7
	W183(n,d)	1.8
ln117	Sn117(n,p)	87.9
	Sn118(n,np)	6.9
	Sn118(n,d)	3.1
	Sn117(n,p)In117m(IT)	1.5
	$Sn120(n,\alpha)Cd117m(\beta-)$	1.5
Sc47	Ti47(n,p)	41.2
	Ti48(n,np)	25.9
	Ti48(n,d)	18.1
	V50(n, α)	9.7
	V51(n,n $lpha$)	5.4

- Ta182 used for W182(n,p) validation
- In117 reactions have been measured so (n,p) used
- Sc47 reactions poorly known and various path uncert. leaves (n,p) too fragile

- Validation performed by:
 - Comparing collapsed cross-sections with those determined by experiment
 - Visual inspection of EXFOR against differential data
 - Pathway analysis performed for all experiments to verify that production of measured nuclide due to specified reaction
- Combination of validation for reactions with measurements and technological nature of library generation supports whole library by its construction methodology
- Consider an example, ¹⁸⁰W(n,p):

180W(n,2n)179mW

841 measurements were considered with σ_C/σ_E distribution:

C/E values

- 66000+ neutron induced reactions with 5000+ 'important' reactions < 2000 with any experimental data and only a few hundred with integral
- Libraries built with hand-modification cannot use the tuned subset to support those without measurements
- Impossibility of measuring total set makes validation capabilities of TENDL (or another similarly constructed) absolutely unique
- Relying upon legacy approach by addition of reactions presents some problems:

Methods

JEFF/ENDF/JENDL missing many reactions with integral data:

Future work

- Non-threshold validation based upon 'compilation of compilations' from Kopecky, Mughabghab, KADoNiS, Rochman including:
 - Thermal/maxwellian cross sections
 - Integral resonances
 - Astrophysical MACS
- For the next integro-differential report:
 - More data from quality, peer-reviewed sources
 - Involvement of others?

Some thoughts:

- TENDL-2014 outperforms EAF-2010, which was modified with full knowledge of the integral values
- Validation of TENDL extends beyond experimental subset due to methodology, unlike any other library
- FISPACT-II allows versatile simulation which can probe DH subtleties, take advantage of full TENDL data and provide more robust calculations of nuclear observables

http://www.ccfe.ac.uk/EASY.aspx

Thank you for your attention

