
Sensitivity Analysis for Activation Problems

Wayne Arter1 and J. Guy Morgan2

1UK Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, United Kingdom
2Culham Electromagnetics Ltd, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

A study has been made as to how to develop further the techniques for sensitivity analysis used by Fispact-II.

Fispact-II is a software suite for the analysis of nuclear activation and transmutation problems, developed for all

nuclear applications. The software already permits sensitivity analysis to be performed by Monte Carlo sampling,

and a faster uncertainty analysis is made possible by a powerful graph-based approach which generates a reduced

set of nuclides on pathways leading to significant contributions to radiological quantities. The peculiar aspects of

the sensitivity analysis problem for activation are the large number, typically thousands, of rate equation parameters

(decay rates and reaction cross-sections) which all have some degree of associated error, and the fact that activity as

a function of time varies as a sum of exponentials, so appears discontinuous as rate parameters are varied unless the

sampling frequency is impractically fast. Nevertheless, Monte Carlo sampling is a generic approach and it is therefore

conceivable that techniques more targeted to the activation problem might be beneficial. Moreover, recent theoretical

developments have highlighted the importance of a two-stage approach to mathematically similar problems, where

in the first stage, information is collected about the global behaviour of the problem, such as the identification of

the rate parameters which cause the greatest variation in dose or nuclear activity, before a second stage examines a

problem with its scope restricted by the information from the first. In the second stage, for example, Quasi-Monte

Carlo sampling may be used in a restricted parameter space. The current work concentrates on the first stage and

consists of a review of possible techniques with a detailed examination of the most promising pathways reduction ap-

proach, examined directly using Fispact-II. All the evidence obtained demonstrates the strong potential of this approach.
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I. Introduction

Fispact-II(1) is a modern software suite for the analysis of nu-

clear activation problems, originally developed for nuclear fu-

sion applications, but now also extensively used in nuclear

fission and astrophysics problems. Indeed, the ongoing de-

velopment of the software takes into account the needs of all

the likely application areas. For a typical activation problem,

thousands of rate equation parameters, corresponding to nu-

clear decay rates and reaction cross-sections, may influence

the activity throughout its history. All of these parameters are

subject to significant uncertainty due to experimental error in

their measurement or theoretical approximations made in their

calculation. Since the dose rate, a weighted sum of separate

nuclide activities, is safety critical, it is important to be able to

estimate how uncertainties in the parameters contribute to the

calculation of activity.

For problems with a small number of parameters, the mean

and standard deviation dose or nclear activity may be calculated

by sampling each parameter at a number of points uniformly

distributed in its distribution then using each set of sample val-

ues to perform a Fispact-II calculation. However, this approach,

known as factorial sampling, suffers from the curse of dimen-

sionality in that the total number of samples required increases

exponentially with number of parameters K. This helps explain

why the Monte Carlo technique is popular. Sample points are

selected at random throughout the K-dimensional parameter

space to avoid the exponential growth. Unfortunately, the con-

vergence of the mean of the samples is slow, proportional to

1/
√

Ns, where Ns is the number of sample points.(2)

Quasi-Monte Carlo (QMC)(3) sampling may offer an accept-

able cost-quality compromise in that it offers a faster rate of

convergence, approaching 1/Ns. When it is realized that QMC

is, despite its name, basically a deterministic approach, it will

be understood that it is difficult to avoid spurious correlations

among the sample points as K increases. These correlations

may destroy the good convergence properties of QMC once K
gets up to a value of 20 to 50, even using the latest techniques.(4)

Similar remarks appear to apply to importance sampling based

on the Markov chain Monte Carlo methodology, or integration

via adaptive Monte Carlo. Hence, activation sensitivity analysis

often involves a first ‘screening’ stage that seeks to reduce the

size of the parameter space to be examined.

This issue is already addressed from a practical standpoint

in Fispact-II by selecting a reduced set of nuclides on reac-

tion and decay pathways that lead from an initial inventory

to target nuclides that give dominant contributions to the radi-

ological quantities of interest. This approach suppresses the

combinatorial explosion sufficiently for useful calculations to

be performed. An advantage of this method is that it can accom-

modate arbitrary sequences of irradiation and cooling steps.(5)
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II. Screening Design

1. General

Historically, sensitivity analysis has often been conducted in

two stages, with a first ‘screening design’ step, to try to identify

those parameters which cause the greatest variation in com-

puted dose or activity, followed by a detailed investigation of

the results of varying the indicated parameters.(6) A number

of different techniques were developed for this, of which the

commonest is ‘One-at-a-Time’ (OAT) where one parameter is

varied while all the others are held fixed at some central value.

This only requires Ns = O(K) samples, but obviously is very

limited in its examination of sample space and does not yield

activity values immediately suitable for calculating the mean.

The other popular strategy is non-deterministic, namely Morris,

which involves the construction of random walks designed so

that they take one step in each coordinate direction in sample

space. Very recently,(7) a non-deterministic version of OAT

has been proposed, which selects central points at random in

parameter space. This has the advantage that data are generated

which can be easily reused to calculate mean and variance in

the second stage.

Nonetheless, all these methods have their disadvantages, ex-

emplified by the need to choose a step-size for the parameter

variation. If too small, large important regions of parameter

space may be ignored. If the step is too large, important local

variation may be missed, because the activity does not neces-

sarily have monotonic dependence on a parameter.

2. Activation-Specific Screening Designs

2.1. Eigenvalue Analysis

An interesting technique is enabled simply by the linearity of

the rate equations with respect to nuclide number, assuming a

fixed irradiation rate, viz.

dN
dt
= AN (1)

where A is the matrix of parameters and N is the vector of

nuclide numbers, (the nuclear inventory). Mathematical theory

indicates that the solution is given as a sum of eigenvectors ei

of A, where each ei is associated with an eigenvalue λi of A.

This solution reveals the specific sensitivities of the activation

problem, since activity Q is a weighted sum of the numbers of

nuclides present at a given time.

In particular, if Q is required at time t0, its value can be sen-

sitive only to those eigenvectors for which λi satisfies λi ≈ 1/t0.

For, if λi is either much smaller or larger, then the properties of

the decaying exponential imply that Q is effectively constant as

a function of λi or zero. Since eigenvalue sensitivity analysis

is a well-developed mathematical technique, it may be used to

discover which entries in A most affect the ‘sensitive’ eigenval-

ues. The algorithms for eigenvalue sensitivity analysis have a

complexity of O(M3) where M is the size of the matrix A, but

given the Gigaflop speed of modern PCs, it may be estimated

that even for M ≈ 4000, an analysis on a desktop machine may

be completed in under an hour.

There seem unfortunately to be severe difficulties with this

approach. The biggest appears to be the huge range of nu-

clear decay rates in the EASY databases. To take as an ex-

ample, EAF 2010, it contains data for 7 nuclides with decay

rates >≈ 1021 s−1, together with Uranium nuclides with half-

lives t1/2 of the order of 1010 yr, i.e. λ ≈ 10−17 s−1, and of course

228 stable nuclides with decay rate 0. The error estimates for

standard eigenvalue algorithms imply that a precision signif-

icantly greater than 21 + 17 = 38 decimal digits is required,

compared to the 15 to 16 digits available in double precision.

Another potential difficulty is that many decay rates are

only approximately known, so that for example some tens of

nuclides in the database have t1/2 given as 1 ms, meaning that

a corresponding number of non-zero eigenvalues may be very

closely spaced. It is apparent that the mathematical eigenvalue

calculation requires research in its own right.

One way of making the eigenvalue problem tractable is to re-

duce the size of the rate matrix A, an idea which leads naturally

onto the work of the next section.

2.2. Pathways Reduction

A possible screening method specific to the activation problem

could use information gained from the existing pathways anal-

ysis. The new pathways reduction method was designed and

implemented by the developers of Fispact-II(5, 8). For present

purposes, it is sufficient to explain that the dominant nuclides

at a specified time are identified by simple examination of the

inventory. ‘Dominant’ nuclides are those which produce either

the biggest dose rates or the largest activities. Graph theoretic

techniques are then used to identify the most important nuclear

pathways leading from the nuclides in the original inventory to

the dominant nuclides. Nuclides on these pathways are listed,

and only these nuclides with the obvious addition of the initial

and dominant nuclides, are used to define a new model problem

with typically a much smaller size of rate matrix A. Reactions

and decays resulting in products not on the pathways allocate

their products to an inert ‘sink’ nuclide which produces no

activity or radiological dose.

The key question is: how much is lost by this reduction? Al-

most certainly there will be a reduction in total Q, because there

will be fewer nuclides present in the final inventory. However,

this reduction may be easily estimated by comparison with the

full calculation. For sensitivity analysis, the important issue

concerns what happens to the distribution of final inventories as

reaction coefficients are varied within their range of uncertainty.

The easiest way to examine this is by a Monte Carlo analysis

as implemented in Fispact-II. A series Ns of inventory calcu-

lations is performed with the set of I independent variables

{Xs
i ; i = 1, . . . , I; s = 1, . . . ,Ns} chosen from distributions

with means 〈Xi〉 and standard deviations 〈ΔXi〉. The default

distribution studied is log-normal. These runs produce a set of

J dependent variables {Y s
j ; j = 1, . . . , J; s = 1, . . . ,Ns}. In the

present context, the independent variables are cross-sections

and their uncertainties, because as presently implemented, ex-

amination of decay constants and their uncertainties is not

possible. The dependent variables are the numbers of atoms of

nuclides j or some related radiological quantity such as dose
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or activity. The user specifies a number Nx of Monte Carlo

samples to be taken for each cross-section, hence Ns = NxI.

The code performs an initial, ‘base’ calculation with full out-

put, then repeats Ns times the sequence of steps with different

sets {Xs
i }. Sensitivity calculations provide both uncertainty and

sensitivity output, as described in ref [1, A.11]. The uncer-

tainty output, of means X̄i and Ȳ j and standard deviations ΔXi

and ΔYj, is of most interest in the present context, although the

sensitivity estimates (Pearson product-moment correlation coef-

ficients) might be of at least equal value in subsequent research

into model reduction.

X̄i =
1

Ns

Ns∑
s=1

Xs
i (2)

ΔXi =

√√√
1

Ns − 1

Ns∑
s=1

[(Xs
i )2 − X̄2

i ] (3)

Ȳ j =
1

Ns

Ns∑
s=1

Y s
j (4)

ΔYj =

√√√
1

Ns − 1

Ns∑
s=1

[(Y s
j )

2 − Ȳ2
j ] (5)

Attention will focus on the relative standard devia-

tions σrstd = ΔYj/Ȳ j as detailed measures of the distributions

of inventories produced by the Monte Carlo sampling.

In addition to writing tables of means, standard deviations

and correlation coefficients, Fispact-II writes the raw data

{Xs
i , Y s

j ; i = 1, . . . , I; j = 1, . . . , J; s = 1, . . . ,Ns} to a sepa-

rate ‘sens’ file for post-processing. These sens data are the

basis for subsequent comparisons between full and reduced

(pathways) analyses.

III. Monte Carlo Analysis

1. Details of Computations

Fispact-II has the capability to treat a vast range of activation

problems, and over a hundred standard tests are supplied with

the software, although not all involve different nuclides. To cap-

ture as much of this range of possible for a reasonable effort, the

seven nuclide mixtures listed in Table 1 have been composed.

As indicated, most of the mixtures consisted of 1 kg of material

subject to a neutron flux of 1015 cm−2s−1, for a year, without

any cooling period. However, to produce a fission problem, an

existing test case with a smaller sample, flux and irradiation

time was used. Further, to compare with experimental data for

Y2O3, a much smaller sample, flux and irradiation time was

used.

The mixtures are used in eight test cases, with the Alloy case

extended to including a cooling phase. (Cooling is expected to

simplify greatly sensitivity analsysis, since it tends to reduce

the number of significant nuclides in the inventory.) Each test

case is run using the full TENDL 2012 database with path-

ways analysis to identify the dominant nuclides and important

reactions, total numbers of which are listed in Table 2. The

sole exception is the YO2 case where a single nuclide, 86Rb

is selected for study. This represents a particularly searching

examination of pathways reduction, as 86Rb is a very small

contributor to the the inventory. Monte Carlo solution of the

full problem, studying the allowed variations in the important

reaction rates, is then performed in the sequence of increas-

ing sample size per reaction, Nx = 10, 40, 160, . . . up to

the maximum value specified in the table. For each mixture,

provided the same machine is used, the cost of a Fispact-II

calculation scales linearly with Ns to a very good approxima-

tion. (Some of the computation times listed may not be strictly

comparable, because the Linux cluster used in the investigation

is heterogeneous.)

The full (F) calculations produce information that is used to

define reduced pathways (R) calculations. For each test case,

an initial Fispact-II (R) calculation defines fluxes and rate data

needed for a sequence of Monte Carlo solutions analogous to

that described in the preceding paragraph.

2. Test Case Comparisons

Each test case has been subject to a detailed programme of

investigation. First, for each of the F and R cases separately,

convergence of the distribution of activity with respect to Ns has

been demonstrated by plotting histograms. Next, for the highest

(and invariably converged) sampling rate, the two distributions

for F and R are compared and found to agree to graphical accu-

racy. More quantitatively, gaussian and log-normal distribution

functions are fitted to the histograms (using the gnuplot fit func-

tion(9)). Results of this procedure appear in Tables 3 and 4.

Lastly, and comprising the most searching examination, the

relative standard deviations for the distribution of each nuclide

separately are compared graphically.

The degree of accuracy to which the graphical comparisons

are accurate can of course be gauged only by looking at the

plots reproduced below. However, from 8 test cases, there are

simply too many graphs to reproduce all of them. The selection

procedure adopted is to show all the graphs for one mixture,

and a second graph of each type for a different mixture. The

second graphs are of the mixtures arranged in alphabetical

order, except that the Fiss and WMix test cases appear after the

Y2O3 case.

The fitting of non-Gaussian distributions to the data in Ta-

ble 4 is questionable in many cases, indeed it is apparently

impossible in some, because it is expected that the estimated

mean μ should be less for the R cases than for the F ones. Note

that the expected ordering is invariably found for Gaussian

fitting, even in the Fe test problem, where the standard devia-

tion σ is smaller than the difference between the F and R cases.

(The two histograms of activity distributions can be reconciled

by the simple expedient of offsetting the F case by the μ differ-

ence.) Nonetheless, the agreement found between the fitting

parameters for equivalent F and R cases, as indicated by the

formal % error statistics is impressive.

Detailed examination of the relative standard deviation statis-

tic σrstd shows that the F and R estimates usually agree to

within two significant figures, although occasionally only to

within one and the smaller values of σ j (< 10−3) are capable

of showing even poorer agreement. Agreement only to one
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Table 1: Test cases. Apart from the Fiss mixture, each consists of numbers of atoms of the listed elements with their natural abun-
dances of nuclides, given as percentages of the whole.

Test Constituents of Mixture Sample Irradiation Cooling Neutron flux

Label Mass Period Period cm−2s−1

Alloy Fe 40.0 : Ni 20.0 : Cr 20.0 : Mn 20.0 1 kg 1 yr 0 1015

Alloy+c Fe 40.0 : Ni 20.0 : Cr 20.0 : Mn 20.0 1 kg 1 yr 1 yr 1015

Fe Fe 1 kg 2.5 yr 0 1015

Fiss U235 3.7 : U238 96.3 8.7 g 3 mo 0 2.59032 × 1014

LiMix Li 40.0 : Be 30.0 : O 30.0 1 kg 1 yr 0 1015

WMix W 20.0 : Re 20.0 : Ir 20.0 : Bi 20.0 : Pb 20.0 1 kg 1 yr 0 1015

Y2O3/YO2 Y 78.74 : O 21.26 1 g 300 s 0 1.116 × 1010

Table 2: Test cases statistics. The entries in the columns labelled ‘Full’ and ‘Pathways Reduced’ are the numbers of dominant
nuclides. (See text for detailed discussion of the computation times.)

Test I, Reactions Full Pathways Matrix Max. Nx, Samples Ns, Total Reduced Full

Label Examined Reduced A Size per Reaction Sample cpu (s) cpu (s)

Alloy 76 23 23 53 640 48 640 82.053 44 136

Alloy+c 50 13 13 640 32 000 56.494 38 623

Fe 26 20 13 23 640 16 640 9.6355 13 995

Fiss 1 47 47 2 560 2 560 33.143 10 143

LiMix 17 9 9 23 640 10 880 4.0664 8 011

WMix 71 29 29 69 640 45 440 96.947 47 019

Y2O3 12 11 11 16 2 560 30 720 4.7893 13 526

YO2 2 1 1 10 240 20 480 2.1057 8 944

significant figure is found for the YO2 test case, but given the

tiny contribution of 86Rb to the total activity, this is probably

reasonable and consistent with the good quantitative agreement

between the larger F and R σrstd values found in the other test

cases.

IV. Summary

Work has been performed to examine the suitability of an

activation-specific screening design method for use in the

Fispact-II suite. A large amount of evidence, from the Monte

Carlo sampling of 8 different test problems, has been gathered

that pathways reduction is a most useful technique.

The distributions of activity per sample obtained by path-

ways reduced calculations have been examined, and compared

with those produced by full Fispact-II calculations. Numerical

parameters for Gaussian and log-normal distributions fitted to

the computed activities agree to at least 2 significant figures,

often 3, as shown in Tables 3 and 4. Histograms of the distribu-

tions in Section III show detailed agreement. Very significantly,

(relative) standard deviations of distributions of separate nu-

clides have been shown to vary little between reduced and full

calculations.

In three of the test cases, the number of significant reac-

tions K was reduced to below 50 where more efficient sampling

techniques could be considered immediately. In all except the

fission problem, K < 100 may be estimated, and for further

analysis of these cases it will help that, as indicated in Table 2,

Figure 1: Analysis of the Alloy test case results, studying conver-
gence with number of Monte Carlo samples, listed in the diagram.
At the top is the full (F) case, below is the pathways reduced (R)
case.
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Table 3: Gaussian fits to distributions of activity produced by Monte Carlo sampling of reaction coefficients. The distribution means μ,
standard deviations σ and normalisations Mf are each measured in Bq/sample, whereas the statistical errors are given as percentages.
Lines labelled F contain results for full Fispact-II computations, whereas those labelled R are pathways reduced. Cases where fitting
was apparently impossible have been omitted.

The Gaussian distribution is defined as fG(x) =
Mf

σ
√

2π
exp− (x−μ)2

2σ2 .

μ % error σ % error Mf % error

Alloy

F 1.06252 × 1015 0.01078 1.78925 × 1013 0.6413 6.49737 × 1012 0.5542

R 1.06241 × 1015 0.01255 1.78981 × 1013 0.7463 6.50396 × 1012 0.6449

Alloy+c

F 2.62494 × 1013 0.1519 1.30939 × 1012 3.089 4.40189 × 1011 2.649

N 2.63444 × 1013 0.1486 1.32886 × 1012 2.984 4.39769 × 1011 2.562

Fe

F 1.38941 × 1014 0.04246 4.77267 × 1012 1.234 1.49789 × 1012 1.069

R 1.38531 × 1014 0.05591 4.72156 × 1012 1.636 1.4923 × 1012 1.419

Fiss

F 1.11555 × 1014 - 7.71499 × 109 2.153 2.47915 × 109 -

R 1.11505 × 1014 - 7.72509 × 109 4.136 2.48529 × 109 -

LiMix

F 2.66037 × 1015 0.0648 5.18814 × 1013 3.22 2.40961 × 1013 2.847

R 2.66 × 1015 0.06296 5.20237 × 1013 3.118 2.41618 × 1013 2.758

WMix

F 1.5813 × 1016 0.002322 6.32329 × 1013 0.5765 2.49504 × 1013 0.4951

R 1.57981 × 1016 0.002001 6.38371 × 1013 0.4915 2.49549 × 1013 0.4224

Y2O3

F 2.33223 × 107 0.5058 4.37985 × 106 2.79 1.2523 × 106 2.361

R 2.32559 × 107 0.6003 4.23901 × 106 3.396 1.24103 × 106 2.882

Table 4: Log-normal fits to distributions of activity produced by Monte Carlo sampling of reaction coefficients. The distribution
means μ, standard deviations σ and normalisations Mf are each measured in Bq/sample (or its natural logarithm), whereas the
statistical errors are given as percentages. Lines labelled F contain results for full Fispact-II computations, whereas those labelled R
are pathways reduced. Cases where fitting was apparently impossible have been omitted.

The log-normal distribution is defined as fL(x) =
M f

xσ
√

2π
exp− (ln x−μ)2

2σ2 .

μ % error σ % error Mf % error

Alloy

F 34.5997 0.0004812 0.0168458 0.6265 6.5 × 1012 0.4761

R 34.5996 0.0005864 0.0168465 0.7651 6.5 × 1012 0.5818

Alloy+c

F 30.8999 0.004332 0.0507008 2.509 4.5 × 1011 2.095

R 30.9033 0.004205 0.0514477 2.4 4.5 × 1011 2.009

Fe

F 32.5655 0.001087 0.0344321 0.9055 1.5 × 1012 0.7256

R 32.5626 0.001647 0.03426 1.376 1.5 × 1012 1.103

LiMix

F 35.5174 0.002981 0.0199884 3.526 2.5 × 1013 2.767

R 35.5186 0.003271 0.0203699 3.848 2.5 × 1013 3.006

Y2O3

F 16.9707 0.004738 0.183698 0.4297 1.25 × 106 0.3772

R 16.9734 0.007921 0.184567 0.715 1.25262 × 106 0.6277

YO2

F 3.33575 0.213 0.897191 0.856 9.36504 0.7281

R 3.3483 0.1181 0.899322 0.4702 9.39112 0.4023
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Figure 2: Analysis of the Alloy test case results, showing typi-
cal agreement between distributions obtained for the full (F) and
(pathways) reduced or R case.

Figure 3: Analysis of the Alloy test case results, showing the
fits of Gaussians to the distributions of activity. At the top is the
full (F) case, below is the pathways reduced (R) case.

Figure 4: Analysis of the Alloy test case results, showing fits of
log-normal functions to the distributions of activity. At the top is
the full (F) case, below is the pathways reduced (R) case.

Figure 5: Analysis of the Alloy test case results, showing the typ-
ical agreement between relative standard deviations obtained for
the full (F) and (pathways) reduced or R cases.
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Figure 6: Analysis of the Alloy+c test case results, studying the
convergence with number of Monte Carlo samples, listed in the
diagram. At the top is the full (F) case, below is the pathways
reduced (R) case.

Figure 7: Analysis of the Fe test case results, showing the typi-
cal agreement between distributions obtained for the full (F) and
(pathways) reduced or R cases.

Figure 8: Analysis of the LiMix test case results, showing fits of
Gaussians to the distributions of activity. At the top is the full (F)
case, below is the pathways reduced (R) case.

Figure 9: Analysis of the YO2 test case results, showing fits of
log-normal functions to the distributions of activity. At the top is
the full (F) case, below is the pathways reduced (R) case.
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Figure 10: Analysis of the Y2O3 test case results, showing the
typical agreement between relative standard deviations obtained
for the full (F) and (pathways) reduced or R cases.

Figure 11: Analysis of the Fiss test case results, studying the
convergence with number of Monte Carlo samples, listed in the
diagram. At the top is the full (F) case, below is the pathways
reduced (R) case.

Figure 12: Analysis of the WMix test case results, showing the
typical agreement between distributions obtained for the full (F)
and (pathways) reduced or R cases.

reduced problems typically execute between 300 to 2 000 times

faster. For example, for some problems, it is conceivable that

K cannot be reduced below the threshold which would make

QMC or other alogrithmic approaches viable, a fact which may

now be rapidly discovered. Nonetheless, even in such cases,

sensitivity results from rapid, reduced pathways calculations

might help to repose or tighten the problem so that sufficiently

small K may be found.
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